
 Page 1

Binary Decision Diagrams – Review and Applications in
VLSI Design

David Artz

ABSTRACT

In a 2008 lecture Dr. Donald Knuth called Binary Decision

Diagrams (BDD) "one of the only really fundamental data

structures that came out in the last twenty-five years". He went on

to indicate that CMU’s Dr. Randal Bryant’s seminal paper (1986)

had been the most cited paper in computer science. While BDDs

were not new,2,3 Bryant’s contributions were threefold, (1)

reduction approach to the BDD along with (2) fixed variable

ordering (3) which allowed for efficient data structure and

associated algorithms that have been instrumental in propelling

solutions to many complex problems heretofore untouched. This is

especially true in VLSI design, where this simple and elegant data

structure has afforded us with solutions in synthesis, verification,

DFT, etc. While ROBDD’s (Reduced Ordered Binary Decision

Diagrams) have led way to more recent advances (or more

appropriately said, renewed interest) in other approaches (for

example, And Invert Graphs used in conjunction with much more

efficient Boolean satisfiability (SAT) solvers) BDD’s are still

important and given the plethora of robust open source libraries for

most languages (C++, Perl, Python, Tcl, Java, etc.) I assert still an

import tool to add to your repertoire.

Keywords

Fun, Interesting, Neat, Cool, BDD, ROBDD, Simple, Elegant,

Powerful.

1. INTRODUCTION

If you’re an engineer who has spent much of their focus closer to

circuits and device physics, or have been in the industry for several

decades, you may know little about the Reduced Ordered Binary

Decision Diagrams as had I. A few years ago, when faced with the

problem of characterizing a library (we were small project, no

funding for library characterization software) I happened across the

ROBDD (often referred to as just BDD) data structure and

associated algorithms. This was a key piece of technology needed

to easily automate the stimulus generation and side pin

sensitization. A number of robust BDD open source libraries were

available and after picking one pretty much at random, had a

working solution completed in no time, all with little knowledge of

the elegance, simplicity, and power that the underlying BDD's

afford.

Recently I had an opportunity (due to some of the unique

design challenges in the design of FPGA’s) to delve into ROBDD's

in more depth to solve a problem that did not lend itself readily to

commercial EDA/CAD. That was the verification of conditional

mode expressions for the look up table functionality.

I hope in some way my enthusiasm for the importance and

wide applicability of BDD's to many problems we have in VLSI

design will encourage the reader to incorporate this capability,

much like ones understanding of linked lists, hash tables, or other

data structures we use from time to time in their arsenal of problem

solvers. Or, at least give one deeper appreciations of why some

tools behave in the manor they do.

2. BACKGROUND

There are many forms we are used to seeing Boolean relationships

in. Most of us are of course familiar with schematics, Boolean

expressions, truth tables, Karnaugh maps, etc. All these

representations are different forms for a proposition or logic

statements (most are ill-suited for manipulation in the computer,

e.g., a truth-table for an n input Boolean function will have 2𝑛

rows). And by proposition statements I am speaking from

Mathematical Logic, e.g., Proposition logic (a system based on

propositions or statements which are declarative sentences that are

either true or false). There are more advanced forms of

mathematical logic, modal, equational, 1st order, and higher order

logic and calculus. Why do I bother to mention this? If you go out

to explore the literature on BDDs, you will see many times the

author will write entirely in the language of propositional logic, or

higher order logics. Some of the basic Boolean theory was of course

established long ago5 and sometimes this older nomenclature and

terminology has carried forward. Indeed, the power of BDD’s is

that it’s quite easy to utilize the long lineage of work and their

formalisms, axioms, relationships, etc. in the context of this elegant

data structure.

3. Boolean Representation

So what is A BDD? Let’s answer that in context of starting from

the most ubiquitous description of Boolean functions, the truth

table in Figure 1. For example, the table below represents the

expression f = (a  c)  (c  b).

Note the expression is in sum-of-product form or

disjunction normal form (DNF), i.e., a disjunction of

conjunctive clauses where a clause is one or more literals

and a literal is either a variable or negated variable. The

Product-of-sums or conjunctive normal form (CNF) is

similarly defined, but with the connectives switched.

To the right of the truth table is the same function represented as a

binary decision tree.

a b c f

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Figure 1

Some things to note in the graph, the vertices represent the variables

in the expression. If you want to solve the function for various

 Page 2

assignments of 1 or 0 to the variables, you would start at the root

node, in this case variable a, and depending on the variable

assignment traverse the dotted edge for a zero assignment and the

solid edge for a one assignment. So, in the case of f(a=1, b=1, c=0),

we would travel the solid edge from the root node, down to the

variable b, at which point we would again travel the solid edge to

variable c, and finally with the c being assigned zero, we would

take the dotted edge terminating at a leaf node which has a value of

one. Examining the truth table we can see that f = 1 for the given

variable assignment. Note that this graph is ordered. That is the

variables, a, b, and c all appear at the same depth from the root

node, the common notation for this is a < b < c.

3.1 If Then Else
Let’s look at this tree (Figure 1) with a little more scrutiny. Notice

if I wanted to find all the variable assignments that satisfied the

equation (i.e., f = 1) then I need only walk from every 1 leaf node

back up the tree to the root node. The edges telling me what the

variable assignment needs to be. Also note how the right hand side

of this graph corresponds to the lower half of the truth table (the 1

branch from the root node). Conversely, the 0 branch from the root

node a corresponds to the upper half of the truth table. It’s as if the

a variable is a select on a mux which has two inputs from two

different functions represented by the subtrees off of a. Indeed, we

can think of the nodes in this tree as just that, little mux2’s

controlled by the variable of that node. I can redraw the tree as the

following schematic:

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0

1

0

0

1

1

1

c b a

f

b

c

c

c

Figure 2

Of course, you already knew this if your familiar with the inner

workings of FPGA’s - that is, any function can be implemented by

muxes (LUT). We may also refer to this as an ITE implementation

(If Then Else). But, back to the subtree expressions, we can redefine

the function f(a,b,c) as follows: af(1,b,c)  af(0,b,c). As should

be apparent, this can be applied recursively through the entire depth

of the tree.

3.2 Shannon Decomposition
This is of course what Boole and Shannon realized and is referred

to as Shannon’s Expansion Theorem and the more general form is

f = 𝑥𝑖 f(𝑥𝑖=1)  𝑥𝑖 f(𝑥𝑖=0). I like to think of this analogously

as a way it may be handled in the real number domain, that is,

representing a complex function in simpler form much the way we

do with Tayler series expansion of ex being 𝑒𝑥 = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+ ⋯. As we shall see, there are many analogs in the Boolean

domain that are powerful operators which are very useful when

combined with BDD’s. The subexpressions in the example, i.e.,

f(𝑥𝑖=1) and f(𝑥𝑖=0) are called the positive and negative cofactor of

f. The positive cofactor f(𝑥𝑖=1) is obtained by substituting

(restricting or constraining) 1 in for the variable (or variables) of

interest. In our small example the positive cofactor would be c 

(c  b). For the negative cofactor we substitute a 0, resulting in (c

 b). There are several very useful properties of cofactors. For

example, cofactor of NOT is the NOT of cofactors, the cofactor of

AND is the AND of cofactors, etc., etc., etc. valid for all Boolean

operators.

3.3 Characterization and DFT
Remember the little problem I mentioned, sensitizing the secondary

pins of a hundreds of library cells to perform characterization? How

would one formulate a solution to that given what we have so far

talked about? Let’s continue with our little function shown in

symbol form below.

a

b

fc

Figure 3

Given the above, how might we determine the voltages on any two

of its inputs to perform a transient from the remaining third pin to

the output? Think of the following approach to finding a

propagation of a to f enabling assignment for secondary pins b and

c.

c

c

b

b

Figure 4

In the figure above there are two instances of the example function,

the top instance has it’s a pin tied high. The bottom instance has the

a pin tied to low. Their outputs are connected to an XOR gate and

thus the result will only be high when the two instances differ in

value. Whenever this condition occurs (when output of XOR is

high) we know the b and c states are such that a transition on the a

pin would result in a corresponding output change. Thus, we have

a way of identifying one or more states for the secondary pins

which would allow for a transition from a to f.

If you’re into DFT, you may have noticed this is the exact same

approach we would take if we were looking for stuck at faults. The

 Page 3

goal would be to sensitize a path being tested such that we can

verify its functionality.

The careful reader will note that these two instances are nothing

more than positive and negative cofactors of the Boolean

expression with respect to a XOR’ed together. And, if we were to

create a binary decision tree for that expression, we could easily

find valid constraints for pins b and c by walking from any of the 1

leaf nodes up through the tree and looking at the variable

assignments along the way. Of course, the careful reader has also

probably noted that our binary decision tree is just as large as a truth

table would be. This then brings us to the Reduced and Ordered

Binary Decision Tree.

4. ROBDD’s

Before we review the basics of ROBDD’s let’s brush up on some

logic nomenclature and symbolisms.

4.1 Speaking Logic
As mentioned, some of the published literature on this topic can be

somewhat obtuse for the reader who is not well versed in

propositional logic or predicate calculus, etc. Even an electrical

engineer and UC Berkeley professor can be confused over correct

explanation of the terminology and surprisingly there is quite a lot

of aberrant usage among logic practitioners themselves 1.

We are all familiar with basic logic functionality and the logic

expressions referenced so far have already used fairly common

symbols for negation (NOT, ), conjunction (AND, ), and

disjunction (OR, ). There is of course exclusive or (XOR, ) and

perhaps the less familiar implication (if … then, ), and bi-

conditional (if and only if, also called bi-implication). These

are operators which function on literals (variables), formulas or

some combination of both. A tautology is an expression that is

always true (e.g., x  x). A contradiction is simply not a tautology

(i.e., (x  x)) (pun intended ). Satisfiability (as we alluded to

already) implies a Boolean expression has at least one combination

of variable assignments that would lead to 1. We have already seen

a case where we were interested in satisfiability of a Boolean

expression. That was the condition we were seeking for the

example from Figure 4.

4.1.1 Quantification
Perhaps even more esoteric Boolean terminology, but very

germane to BDD’s are quantifiers, such as universal quantification

(for all) xf, sometimes referred to as consensus of f w.r.t. x, and

existential quantification (there exists) xf, alternatively known as

smoothing of f w.r.t. x. Universal quantification and existential

quantification can be thought of as operators on functions much like

the integral symbol from calculus And why I’ve mentioned

calculus; you may be surprised to know we have already shown the

usefulness of a Boolean differential (also known as unique

quantification
𝜕𝑓

𝜕𝑥
). Just as a differential equation shows how the

function changes with respect to the derivative of the variable in

question, analogous in the Boolean realm is unique quantification,

where we are looking to see if the Boolean is sensitive to changes

in that variable. This of course was our example of finding the side

pin constraints of a circuit to be characterized for a timing arc of

interest. We used the Boolean difference to see if the two copies of

our function was sensitive to differences in said variable and the

found the values of the other variables under those conditions

(satisfiable).

Quantification operators are all related to Shannon expansion or

decomposition. These operators are powerful and can be used in

derivation of BDD’s themselves or in answering a whole host of

very important questions about one or more BDD’s (e.g.,

equivalency). In summary they are:

Universal 𝑥𝑖f = f(𝑥𝑖=1)  f(𝑥𝑖=0)

Existential 𝑥𝑖f = f(𝑥𝑖=1)  f(𝑥𝑖=0)

Unique
𝜕𝑓

𝜕𝑥𝑖
 = f(𝑥𝑖=1)  f(𝑥𝑖=0)

Note that quantification operators are easily applied too two or

more values in the following way, e.g., with two variables x and y

the existential quantification would be

𝑥, 𝑦f = f(𝑥=0,𝑦=0)  f(𝑥=0,𝑦=1)  f(𝑥=1,y=0)  f(𝑥=1,y=1)

Adding to the confusion is that some of the logic symbolism is not

consistently used, e.g., we all can discern ⊤, ⊥ meaning true (T, 1)

or false (F, 0) respectively and negation maybe appearing as “!”,

“~”, or the horizontal line over a literal or entire formula, while

conjunction may be indicated by “&”, “.”, or “*” and disjunction

by “|” or “+”. Worse still is inconsistent usage of implications,

seeing it referred to with any of following symbols

orOf course, as you have seen, there are synonyms

for much of the terminology adding even more confusion for the

novice. Please don’t let this deter you from studying this

technology; it’s worthwhile to overcome these stumbling blocks!

4.2 Reduction
While we have seen the BDD’s encode the relationships between

the states of a variable and the resulting function they make up. We

have also seen that they are no better at storing and retrieving that

information then O(2𝑛). Let’s show the tree again from Figure 1 to

see if we can do better.

a

b

0 0 1 0 0 1 1 1

c c

b

c c

Figure 5

Clearly, there is redundant information in our graph. Look at the

terminal nodes (square 1 or 0 leaf vertices). These could be reduced

to just two nodes representing 1, and 0. Also, notice the left and

rights sides of the tree, where the c variables are not needed (i.e.,

ITE(c,0,0) = 0, and ITE(c,1,1) = 1). Could this tree not be reduced

to that of the graph in Figure 6?

 Page 4

a

b

0 1

c

b

c

Figure 6

To summarize, an ROBDD is nothing more than a binary decision

tree (which is a representation of Shannon expansion) that has had

any common (isomorphic) subtree’s merged (in this example we

only had common leaf nodes which were merged). In addition, any

node with identical children is removed (as was the case for the

nodes ITE(c,0,0) and ITE(c,1,1). And, to reiterate, vertex ordering

must be the same from the rooted node, no matter what path you

traverse to a leaf node. This reason will be explained shortly.

Graphically put we have, eliminated redundant tests, e.g.:

x

y

x

Figure 7 (eliminate redundant tests)

Merged equivalent leaves:

0 1 0 0 1 1

0 1

Figure 8 (merge equivalent leaves)

And finally merged isomorphic subgraphs (with some additional

annotation to highlight a little rigorousness and not just intuition).

x

y

x

z y

x

z

f1 f2

g h

f

g h

Figure 9 (merge isomorphic subgraphs)

𝑓1 = 𝑓x𝑔(𝑦)  𝑓𝑥ℎ(𝑧) = 𝑓2 ≡ 𝑓

These are reductions to a simpler graph are the contributions of

Bryant. More importantly, he showed that if you maintain a

variable ordering you will end up with a unique signature if you

will, of your Boolean expression after reduction. So, in our three

input pin example, if we were to compute the ROBDD graph for all

possible three input Boolean expressions we would see a unique

graph for each and every one. This indicates that we can compare

these graphs against each other for comparison of functionality (an

implicit formal verification). Indeed, coupled with Bryant’s elegant

and simple data structure for ROBDD’s, this operation (a formal

comparison) can be achieved in O(1) time! Of course, building the

ROBDD’s takes longer. Unfortunately, there are a class of

expressions which has been shown cannot be done any faster than

exponentially (e.g., multipliers). But, the wide adoption of

ROBDD’s and their various incarnations should be a clear

indication that most real world problems exhibit much better

runtime and memory consumption behavior.

4.3 Variable Ordering
You might be curious if the ROBDD graph for our example

expression (a  c)  (c  b) can be made any smaller. Certainly it

can. The choice of our variable ordering significantly impacts the

resulting quality (as measured by node and/or edge count) of the

ROBDD. We would generate the following ROBDD if we used the

variable ordering b < c < a:

b

c

0

c

a

1

Figure 10 (b < c < a)

What if we wanted to write out the Boolean expression from the

BDD, how would we proceed? Simple, traverse all the paths that

lead to the functions 1 value. If we traverse a false path from a

literal we write down its negated form otherwise the non-negated

form is used and connected into conjunctive clauses for each path.

These are finally put together with disjunction connectives. From

figure 10 above, the resulting equation would be (b  c  a) 

(b  c  a)  (b  c). This of course is the SOP form, for the POS

for we would reverse the procedure, tracing each path to the false

leaf node and connecting with the disjunction operator to form

clauses, then conjoining the clauses with conjunctions.

But wait, we can still do better, using the variable ordering c < a <

b we obtain the graph in figure 11, which results in our original

expression (c  a)  (c  b). Please note, this is not an approach

for creating minimum CNF or DNF expressions.

c

a

0

b

1

Figure 11 (c < a < b)

 Page 5

This has been a whole area of fruitful research culminating with

many static and dynamic approaches to finding the optimal variable

order. By static I refer to the initial order, perhaps gleaned from the

schematic circuit itself (in the case your deriving ROBDD’s from a

design schematic), or dynamically, either during the building or

modification of the ROBDD or as a separate step entirely. In any

case, the correct variable ordering can mean the difference between

traversing a graph an exponential number of times to obtain some

answer, or a linear number of times. The difference can be very

stark on real world examples as shown by a small four input mux

below with poor variable ordering.

Figure 12 (poor variable ordering on mux4)

Versus an optimal variable ordering for the same four input mux

(see Figure 13 below). Although, sometimes a non-optimal

variable ordering may be advantageous, e.g., if we treat this small

mux4 example as a simplified version of the input stage of the

la_l_lut molecule we can see that if bn bits representing the

CRAM pattern, when ordered prior to the selects A, and B, it’s

more apparent that there are certain CRAM bit values where the

selects play no role in the overall function. For example,

traversing the extreme left or right paths from the rooted node b0

we would generate the constants 1 or 0, independent of the selects

A and B values.

Figure 13 (optimal variable ordering on mux4)

The reader should not be put off using ROBDD’s over these details

of building and optimizing the graph. Most open source BDD

packages take care of these details for the user. Detailed knowledge

about the underlying technology is reviewed for those occasions

when a user encounters issues that may require debugging or as I

said at the outset, understanding some tools behavior’s (e.g.,

Synopsys esp-cv, and why it can easily run out of memory or take

forever to complete on certain schematics without intervention).

4.4 Formal Equivalency
While I’ve already mentioned that the ROBDD serves as a

signature if you will, that can be an implicit check of equivalence

between circuits because of the ROBDD’s canonical form, what

would the results be if we explicitly verified two identical

Booleans. Using our example again, let’s say we wanted to

compare against a different implementation, but same function:

?
=c

b

a

c

b

a

Figure 14

If you build a ROBDD for both of these circuits you will (given the

variable ordering c < a < b) expect to get identical ROBDD’s from

Figure 11. But, what would happen if you explicitly did a formal

comparison and we used the approach similar as with the challenge

of finding a propagation enabling assignment?

c

b

a

c

b

a

Figure 15 (explicit formal verification)

In this case we tie each of the circuits together with a XNOR which

will result in a 1 only when the inputs are identical. If you build the

ROBDD for this complete circuit, you will see that the resulting

ROBDD is a very uninteresting graph but is indeed a tautology (true

for every input combination) and thus formally confirms

equivalency.

1

f

Figure 16 (tautology ROBDD)

As ROBDD popularity spread like wild fire in the early 1990’s a

plethora of tweaks and enhancements and modifications were made

to address its short comings or extend it for certain domains.

Stochastic optimization to variable ordering, further reduction of

the data structure (e.g., do we need to explicitly indicate the false

paths). One could imagine all the permutations you could do by

allowing the edges to take on different values, relaxing the ordering

of variables within the BDD, different decomposition approaches,

etc., etc., etc. Resulting in more derivatives or flavors of BDD’s

then time permits to discuss in this paper, e.g., ZBDD’s, EVBDD’s,

FEVBDD’s, MTBDD’s, Free BDD’s, etc., etc., etc. Improvements

have also been made to the fundamental data structure which very

economically stores the Boolean; resulting in support for extremely

large BDD’s so large where the structure is stored on disk and not

main memory. Improvements to the garbage collection cache

 Page 6

handling. Parallelization and thread safe enhancements, again the

list goes on seemingly ad-infinitum.

Just as the list of extensions to BDD’s has grown prolifically, so

has the application to real world problems in VLSI design. While

we have only scratched the surface in terms seeing a few small

examples the list obviously contains Synthesis, e.g., in the

technology mapping phase, as it was seen that the BDD is

decomposition into simpler expressions, and though ordering and

reduction we can have canonical representations for Boolean

functions. This approach is one way to map a BDD into a library of

gates. Obviously, verification is readily tackled via BDD’s as we

have seen. Not just for cones of combinatorial logic, but also finite

state machines. In the case of FSM we essentially encode the

variables just as we did with our examples, but also introduce the

idea of a next state for the variables, e.g., variable v, would have v’

representing its next state, say in the case of a counter.

Perhaps I’ll leave you with a more concrete example of how easy

BDD’s can be used to represent something other then what we have

discussed so far. How would you represent a function where we

have values other than just true or false, perhaps you need five

values, the ⊤, ⊥ (true and false) but also z (for high impedance) and

x (unknown) and let’s say x’ (unknown next state). We could

encode these multiple values as binary variables as show below.

v

0

1

2
3

4

v2

0

1 2
3

4

v1

v0 v0

Figure 17

Now it should be apparent that the BDD can represent the function

of many circuits, used in verifying many characteristics,

simulation, verification, etc. and all this with the same data

structure and underlying supporting algorithms simplifying ones

coding challenges.

5. BDD Libraries
Hopefully you may be encouraged to try some small problems

yourself, but daunted at the task of implementing the basic BDD

capabilities. I would be also, it typically takes a very experienced

software developer and advanced knowledge of BDD’s and

ROBDD’s in general many months to implement a base library in

support of same. But, given the popularity of BDD’s, there’s an

abundance of good implementations readily available in your

favorite language. While most have been implemented in C/C++,

their API’s have been ported to Perl, python, tcl, Java, etc.. Your

problem is now one of selecting the best package for your needs.

Dr Geert Janssen does a great job of comparing most of the

available software for BDD creation, manipulation, and support. In

all, he reviews 13 packages and in summary concludes only a few

are worthwhile of industrial level problems. I personally have had

great success with both CUDD and BuDDY, both API’s are similar

enough that if you learn one, the other is quite easy to migrate to.

CUDD affords more functionality then BuDDY, indeed, more than

any other available package. And both are blazingly fast. CUDD

also has more recent support and maintenance, and more

comprehensive documentation.

6. CONCLUSIONS AND FUTURE WORK
We have looked at BDD’s, and in particular the ROBDD,

introduced some of the Predicate or 1st Order Logic terms and

vernacular necessary to further probe the extent of BDD’s usage in

VLSI design. A few of examples (verification, test, equivalency)

were presented to hopefully wet ones appetite over further research

into BDD’s as they had mine. While only touching on a few

examples, rest assured BDD’s have found their usefulness in other

VLSI problems, e.g., the optimal synthesis of pass gate transistor

circuits and their layout, signal probability determination (as in

Ansys Red Hawk’s probability propagation switching activity

mode), even RLC interconnect parasitic reduction.

7. REFERENCES

Predicate Logic

[1] Eric C. R. Hehner, “Boolean Formalism and Explanations”,

1996 Proceedings of the 5th International Conference on

Algebraic Methodology and Software Technology, 351-374.

Historical

[2] C. Y. Lee, “Representation of Switching Circuits by Binary

Decision Diagrams,” Bell Syst. Tech J., vol. 38, pp. 985-999,

July 1959.

[3] S. Akers, “Binary Decision Diagrams,” IEEE Trans.

Computers, vol. C-27, no. 6, pp. 509-516, June 1978.

[4] R. E. Bryant, “Graph-Based Algorithms for Boolean

Function Manipulation,” IEEE Trans. Computers, vol. C-35,

no. 8, pp. 677-691, August 1986

[5] George Boole, “An Investigation of the Laws of Thought: On

which are Founded the Mathematical Theories of Logic and

Probabilities”, 1854

Variations on Binary Decision Diagrams

[6] R. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A.

Pardo, and F. Somenzi. “Algebraic decision diagrams and

their applications”. In Proc. IEEE/ACM International

Conference on CAD, pages 188{191. IEEE Computer

Society Press, 1993.

[7] Alan Mishchenko, “An Introduction to Zero-Suppressed

Binary Decision Diagrams”, Technical report, Portland State

University, June 2001

[8] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E.

Macii, A. Pardo, and F. Somenzi. “Algebraic decision

diagrams and their applications. Formal Methods in System

Design”, 171-206, 1997.

[9] A.Narayan, “Recent Advances in BDD Based

Representations for Boolean Functions: A Survey”, in Proc.

12th International Conference on VLSI Design, Goa, India,

1999, pp. 408-413.

Implementations

[10] Geert Janssen, “A Consumer Report on BDD Packages”.

Proceedings of the 16th Symposium on Integrated Circuits

and Systems Design (SBCCI03). Sao Paulo, Brazil, 2003

[11] Lovato, A., Macedonio, D., Spoto, F., “A Thread Sage

Library for Binary Decision Diagrams”, Giannakopoulou, D.,

https://books.google.com/books?id=SWgLVT0otY8C&pg=PA73&dq=to+expand+or+develop+a+function#v=onepage&q=to%20expand%20or%20develop%20a%20function&f=false
https://books.google.com/books?id=SWgLVT0otY8C&pg=PA73&dq=to+expand+or+develop+a+function#v=onepage&q=to%20expand%20or%20develop%20a%20function&f=false
https://books.google.com/books?id=SWgLVT0otY8C&pg=PA73&dq=to+expand+or+develop+a+function#v=onepage&q=to%20expand%20or%20develop%20a%20function&f=false

 Page 7

Salaun, G. (eda) SEFM 2014. LNCS, vol. 8702, pp. 35-49.

Springer, Heidelberg (2014)

[12] “Parallel Disk-Based Computation for Large, Monolithic

Binary Decision Diagrams” D. Kunkle, V. Slavici and G.

Cooperman. International Workshop on Parallel Symbolic

Computation (PASCO '10) Grenoble, France, 2010.

[13] Haim Cohen, “The BuDDy Library & Boolean Expressions”,

Dr. Dobb's Journal, September 2004

Design for Test and Testability

[14] Juan A. Carrasco and Víctor Suñé, “An ROBDD-Based

Combinatorial Method for the Evaluation of Yield of Defect-

Tolerant Systems-on-Chip”, IEEE Transactions on VLSI

Systems, Vol 17, No. 2, February 2009.

[15] Janusz Sosnowski, Tomasz Wabia, Tomasz Bech, “Path

Delay Fault Testability Analysis”, DFT 2000: 338-346

Activity Factor or Signal Switching Probability

[16] Christine H. Tran, “Incremental Switching Factor

Calculation for Power Estimation”

[17] Felipe Machado, Yago Torroja, Teresa Riesgo, José

Gutiérrez Abascal, “A BDD Proposal for Probabilistic

Switching Activity Estimation”

[18] Yingtao Jiang, Yuke Wang, Xiaoyu Song, Y. Savaria,

“Computation of Signal Output Probability for Boolean

Functions Represented by OBDD”

Pass Transistor Circuits

[19] Rupesh S. Shelar and Sachin S. Sapatnekar, “BDD

Decomposition for Delay Oriented Pass Transistor Logic

Synthesis”, IEEE Transactions on VLSI Systems, 2005

[20] D. Markovic´, B. Nikolic´, V.G. Oklobdzˇija, “A general

method in synthesis of pass-transistor circuits”

[21] P.W.C. Prasad, M. Raseen, S. Sasikumaran, “Delay

Minimization In Pass Transistor Logic Use Of Binary

Decision Diagram”

[22] Christoph Scholl Bernd Becker, “On the Generation of

Multiplexer Circuits for Pass Transistor Logic”

Variable Ordering

[23] Michael Rice and Sanjay Kulhari, “A Survey of Static

Variable Ordering Heuristics for Efficient BDD/MDD

Construction”

[24] Lei Zhang, Zhenghui Lin. Zongwei Lv, “How to Group

Variables for Reducing BDD”

[25] Richard Rudell, “Dynamic Variable Ordering for Ordered

Binary Decision Diagrams”

[26] Pi-Yu Chung, Ibrahim N. Hajj, and Janak H. Patel, “Efficient

Variable Ordering Heuristics for Shared ROBDD”

[27] Masahiro Fujita, Yusuke Matsunaga, and Taeko Kakuda,

“On Variable Ordering of Binary Decision Diagrams for the

Application of Multi-level Logic Synthesis”

Finite State Machine, Reachability, etc.

[28] Wilsin Gosti, Tiziano Villa, Alex Saldan, Alberto L.

Sangiovanni-Vincentelli, FSM Encoding For BDD

Representations

