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ABSTRACT 

 

In a 2008 lecture Dr. Donald Knuth called Binary Decision 

Diagrams (BDD) "one of the only really fundamental data 

structures that came out in the last twenty-five years". He went on 

to indicate that CMU’s Dr. Randal Bryant’s seminal paper (1986) 

had been the most cited paper in computer science. While BDDs 

were not new,2,3 Bryant’s contributions were threefold, (1) 

reduction approach to the BDD along with (2) fixed variable 

ordering (3) which allowed for efficient data structure and 

associated algorithms that have been instrumental in propelling 

solutions to many complex problems heretofore untouched. This is 

especially true in VLSI design, where this simple and elegant data 

structure has afforded us with solutions in synthesis, verification, 

DFT, etc. While ROBDD’s (Reduced Ordered Binary Decision 

Diagrams) have led way to more recent advances (or more 

appropriately said, renewed interest) in other approaches (for 

example, And Invert Graphs used in conjunction with much more 

efficient Boolean satisfiability (SAT) solvers) BDD’s are still 

important and given the plethora of robust open source libraries for 

most languages (C++, Perl, Python, Tcl, Java, etc.)  I assert still an 

import tool to add to your repertoire.  

Keywords 
 

Fun, Interesting, Neat, Cool, BDD, ROBDD, Simple, Elegant, 

Powerful. 

1. INTRODUCTION 
 

If you’re an engineer who has spent much of their focus closer to 

circuits and device physics, or have been in the industry for several 

decades, you may know little about the Reduced Ordered Binary 

Decision Diagrams as had I. A few years ago, when faced with the 

problem of characterizing a library (we were small project, no 

funding for library characterization software) I happened across the 

ROBDD (often referred to as just BDD) data structure and 

associated algorithms. This was a key piece of technology needed 

to easily automate the stimulus generation and side pin 

sensitization. A number of robust BDD open source libraries were 

available and after picking one pretty much at random, had a 

working solution completed in no time, all with little knowledge of 

the elegance, simplicity, and power that the underlying BDD's 

afford. 

Recently I had an opportunity (due to some of the unique 

design challenges in the design of FPGA’s) to delve into ROBDD's 

in more depth to solve a problem that did not lend itself readily to 

commercial EDA/CAD. That was the verification of conditional 

mode expressions for the look up table functionality. 

I hope in some way my enthusiasm for the importance and 

wide applicability of BDD's to many problems we have in VLSI 

design will encourage the reader to incorporate this capability, 

much like ones understanding of linked lists, hash tables, or other 

data structures we use from time to time in their arsenal of problem 

solvers. Or, at least give one deeper appreciations of why some 

tools behave in the manor they do. 

2. BACKGROUND 
 

There are many forms we are used to seeing Boolean relationships 

in. Most of us are of course familiar with schematics, Boolean 

expressions, truth tables, Karnaugh maps, etc. All these 

representations are different forms for a proposition or logic 

statements (most are ill-suited for manipulation in the computer, 

e.g., a truth-table for an n input Boolean function will have 2𝑛 

rows). And by proposition statements I am speaking from 

Mathematical Logic, e.g., Proposition logic (a system based on 

propositions or statements which are declarative sentences that are 

either true or false). There are more advanced forms of 

mathematical logic, modal, equational, 1st order, and higher order 

logic and calculus. Why do I bother to mention this? If you go out 

to explore the literature on BDDs, you will see many times the 

author will write entirely in the language of propositional logic, or 

higher order logics. Some of the basic Boolean theory was of course 

established long ago5 and sometimes this older nomenclature and 

terminology has carried forward. Indeed, the power of BDD’s is 

that it’s quite easy to utilize the long lineage of work and their 

formalisms, axioms, relationships, etc. in the context of this elegant 

data structure.  

3. Boolean Representation 
 

So what is A BDD? Let’s answer that in context of starting from 

the most ubiquitous description of Boolean functions, the truth 

table in Figure 1. For example, the table below represents the 

expression f = (a  c)  (c  b).  

Note the expression is in sum-of-product form or 

disjunction normal form (DNF), i.e., a disjunction of 

conjunctive clauses where a clause is one or more literals 

and a literal is either a variable or negated variable. The 

Product-of-sums or conjunctive normal form (CNF) is 

similarly defined, but with the connectives switched. 

To the right of the truth table is the same function represented as a 

binary decision tree. 

a b c f

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1
 

Figure 1 

Some things to note in the graph, the vertices represent the variables 

in the expression. If you want to solve the function for various 
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assignments of 1 or 0 to the variables, you would start at the root 

node, in this case variable a, and depending on the variable 

assignment traverse the dotted edge for a zero assignment and the 

solid edge for a one assignment. So, in the case of f(a=1, b=1, c=0), 

we would travel the solid edge from the root node, down to the 

variable b, at which point we would again travel the solid edge to 

variable c, and finally with the c being assigned zero, we would 

take the dotted edge terminating at a leaf node which has a value of 

one. Examining the truth table we can see that f = 1 for the given 

variable assignment. Note that this graph is ordered. That is the 

variables, a, b, and c all appear at the same depth from the root 

node, the common notation for this is a < b < c. 

3.1 If Then Else 
Let’s look at this tree (Figure 1) with a little more scrutiny. Notice 

if I wanted to find all the variable assignments that satisfied the 

equation (i.e., f = 1) then I need only walk from every 1 leaf node 

back up the tree to the root node. The edges telling me what the 

variable assignment needs to be. Also note how the right hand side 

of this graph corresponds to the lower half of the truth table (the 1 

branch from the root node). Conversely, the 0 branch from the root 

node a corresponds to the upper half of the truth table. It’s as if the 

a variable is a select on a mux which has two inputs from two 

different functions represented by the subtrees off of a. Indeed, we 

can think of the nodes in this tree as just that, little mux2’s 

controlled by the variable of that node. I can redraw the tree as the 

following schematic: 
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Figure 2 

Of course, you already knew this if your familiar with the inner 

workings of FPGA’s - that is, any function can be implemented by 

muxes (LUT). We may also refer to this as an ITE implementation 

(If Then Else). But, back to the subtree expressions, we can redefine 

the function f(a,b,c) as follows: af(1,b,c)  af(0,b,c). As should 

be apparent, this can be applied recursively through the entire depth 

of the tree. 

3.2 Shannon Decomposition 
This is of course what Boole and Shannon realized and is referred 

to as Shannon’s Expansion Theorem and the more general form is 

f = 𝑥𝑖 f(𝑥𝑖=1)  𝑥𝑖 f(𝑥𝑖=0). I like to think of this analogously 

as a way it may be handled in the real number domain, that is, 

representing a complex function in simpler form much the way we 

do with Tayler series expansion of ex being 𝑒𝑥 = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+ ⋯. As we shall see, there are many analogs in the Boolean 

domain that are powerful operators which are very useful when 

combined with BDD’s. The subexpressions in the example, i.e., 

f(𝑥𝑖=1) and f(𝑥𝑖=0) are called the positive and negative cofactor of 

f. The positive cofactor f(𝑥𝑖=1) is obtained by substituting 

(restricting or constraining) 1 in for the variable (or variables) of 

interest. In our small example the positive cofactor would be c  

(c  b). For the negative cofactor we substitute a 0, resulting in (c 

 b). There are several very useful properties of cofactors. For 

example, cofactor of NOT is the NOT of cofactors, the cofactor of 

AND is the AND of cofactors, etc., etc., etc. valid for all Boolean 

operators. 

3.3 Characterization and DFT 
Remember the little problem I mentioned, sensitizing the secondary 

pins of a hundreds of library cells to perform characterization? How 

would one formulate a solution to that given what we have so far 

talked about? Let’s continue with our little function shown in 

symbol form below. 

a

b

fc

 

Figure 3 

Given the above, how might we determine the voltages on any two 

of its inputs to perform a transient from the remaining third pin to 

the output? Think of the following approach to finding a 

propagation of a to f enabling assignment for secondary pins b and 

c. 

c

c

b

b

 

Figure 4 

In the figure above there are two instances of the example function, 

the top instance has it’s a pin tied high. The bottom instance has the 

a pin tied to low. Their outputs are connected to an XOR gate and 

thus the result will only be high when the two instances differ in 

value. Whenever this condition occurs (when output of XOR is 

high) we know the b and c states are such that a transition on the a 

pin would result in a corresponding output change. Thus, we have 

a way of identifying one or more states for the secondary pins 

which would allow for a transition from a to f. 

 

If you’re into DFT, you may have noticed this is the exact same 

approach we would take if we were looking for stuck at faults. The 
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goal would be to sensitize a path being tested such that we can 

verify its functionality.  

 

The careful reader will note that these two instances are nothing 

more than positive and negative cofactors of the Boolean 

expression with respect to a XOR’ed together. And, if we were to 

create a binary decision tree for that expression, we could easily 

find valid constraints for pins b and c by walking from any of the 1 

leaf nodes up through the tree and looking at the variable 

assignments along the way. Of course, the careful reader has also 

probably noted that our binary decision tree is just as large as a truth 

table would be. This then brings us to the Reduced and Ordered 

Binary Decision Tree. 

4. ROBDD’s 
 

Before we review the basics of ROBDD’s let’s brush up on some 

logic nomenclature and symbolisms. 

4.1 Speaking Logic 
As mentioned, some of the published literature on this topic can be 

somewhat obtuse for the reader who is not well versed in 

propositional logic or predicate calculus, etc. Even an electrical 

engineer and UC Berkeley professor can be confused over correct 

explanation of the terminology and surprisingly there is quite a lot 

of aberrant usage among logic practitioners themselves 1. 

 

We are all familiar with basic logic functionality and the logic 

expressions referenced so far have already used fairly common 

symbols for negation (NOT, ), conjunction (AND, ), and  

disjunction (OR, ). There is of course exclusive or (XOR, ) and 

perhaps the less familiar implication (if … then, ), and bi-

conditional (if and only if, also called bi-implication).  These 

are operators which function on literals (variables), formulas or 

some combination of both. A tautology is an expression that is 

always true (e.g., x  x). A contradiction is simply not a tautology 

(i.e., (x  x)) (pun intended ). Satisfiability (as we alluded to 

already) implies a Boolean expression has at least one combination 

of variable assignments that would lead to 1. We have already seen 

a case where we were interested in satisfiability of a Boolean 

expression. That was the condition we were seeking for the 

example from Figure 4. 

 

4.1.1 Quantification 
Perhaps even more esoteric Boolean terminology, but very 

germane to BDD’s are quantifiers, such as universal quantification 

(for all) xf, sometimes referred to as consensus of f w.r.t. x, and 

existential quantification (there exists) xf, alternatively known as 

smoothing of f w.r.t. x. Universal quantification and existential 

quantification can be thought of as operators on functions much like 

the integral symbol from calculus And why I’ve mentioned 

calculus; you may be surprised to know we have already shown the 

usefulness of a Boolean differential (also known as unique 

quantification 
𝜕𝑓

𝜕𝑥
). Just as a differential equation shows how the 

function changes with respect to the derivative of the variable in 

question, analogous in the Boolean realm is unique quantification, 

where we are looking to see if the Boolean is sensitive to changes 

in that variable. This of course was our example of finding the side 

pin constraints of a circuit to be characterized for a timing arc of 

interest. We used the Boolean difference to see if the two copies of 

our function was sensitive to differences in said variable and the 

found the values of the other variables under those conditions 

(satisfiable).  

 

Quantification operators are all related to Shannon expansion or 

decomposition. These operators are powerful and can be used in 

derivation of BDD’s themselves or in answering a whole host of 

very important questions about one or more BDD’s (e.g., 

equivalency). In summary they are: 

 

Universal 𝑥𝑖f = f(𝑥𝑖=1)  f(𝑥𝑖=0) 

Existential 𝑥𝑖f = f(𝑥𝑖=1)  f(𝑥𝑖=0) 

Unique 
𝜕𝑓

𝜕𝑥𝑖
 = f(𝑥𝑖=1)  f(𝑥𝑖=0) 

 

Note that quantification operators are easily applied too two or 

more values in the following way, e.g., with two variables x and y 

the existential quantification would be 

 

𝑥, 𝑦f = f(𝑥=0,𝑦=0)  f(𝑥=0,𝑦=1)  f(𝑥=1,y=0)  f(𝑥=1,y=1) 

 

Adding to the confusion is that some of the logic symbolism is not 

consistently used, e.g., we all can discern ⊤, ⊥ meaning true (T, 1) 

or false (F, 0) respectively and negation maybe appearing as “!”, 

“~”, or the horizontal line over a literal or entire formula, while 

conjunction may be indicated by “&”, “.”, or “*” and disjunction 

by “|” or “+”. Worse still is inconsistent usage of implications, 

seeing it referred to with any of following symbols 

orOf course, as you have seen, there are synonyms 

for much of the terminology adding even more confusion for the 

novice. Please don’t let this deter you from studying this 

technology; it’s worthwhile to overcome these stumbling blocks! 

 

4.2 Reduction 
While we have seen the BDD’s encode the relationships between 

the states of a variable and the resulting function they make up. We 

have also seen that they are no better at storing and retrieving that 

information then O(2𝑛). Let’s show the tree again from Figure 1 to 

see if we can do better. 

a

b

0 0 1 0 0 1 1 1

c c

b

c c

 
Figure 5 

Clearly, there is redundant information in our graph. Look at the 

terminal nodes (square 1 or 0 leaf vertices). These could be reduced 

to just two nodes representing 1, and 0. Also, notice the left and 

rights sides of the tree, where the c variables are not needed (i.e., 

ITE(c,0,0) = 0, and ITE(c,1,1) = 1). Could this tree not be reduced 

to that of the graph in Figure 6? 
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a

b

0 1

c

b

c

 
Figure 6 

To summarize, an ROBDD is nothing more than a binary decision 

tree (which is a representation of Shannon expansion) that has had 

any common (isomorphic) subtree’s merged (in this example we 

only had common leaf nodes which were merged). In addition, any 

node with identical children is removed (as was the case for the 

nodes ITE(c,0,0) and ITE(c,1,1). And, to reiterate, vertex ordering 

must be the same from the rooted node, no matter what path you 

traverse to a leaf node. This reason will be explained shortly. 

Graphically put we have, eliminated redundant tests, e.g.: 

x

y

x

 
Figure 7 (eliminate redundant tests) 

Merged equivalent leaves: 

0 1 0 0 1 1

0 1
 

Figure 8 (merge equivalent leaves) 

And finally merged isomorphic subgraphs (with some additional 

annotation to highlight a little rigorousness and not just intuition).  

x

y

x

z y

x

z

f1 f2

g h

f

g h

 
Figure 9 (merge isomorphic subgraphs) 

𝑓1 = 𝑓x𝑔(𝑦)  𝑓𝑥ℎ(𝑧) = 𝑓2 ≡ 𝑓 

 

These are reductions to a simpler graph are the contributions of 

Bryant. More importantly, he showed that if you maintain a 

variable ordering you will end up with a unique signature if you 

will, of your Boolean expression after reduction. So, in our three 

input pin example, if we were to compute the ROBDD graph for all 

possible three input Boolean expressions we would see a unique 

graph for each and every one. This indicates that we can compare 

these graphs against each other for comparison of functionality (an 

implicit formal verification). Indeed, coupled with Bryant’s elegant 

and simple data structure for ROBDD’s, this operation (a formal 

comparison) can be achieved in O(1) time! Of course, building the 

ROBDD’s takes longer. Unfortunately, there are a class of 

expressions which has been shown cannot be done any faster than 

exponentially (e.g., multipliers). But, the wide adoption of 

ROBDD’s and their various incarnations should be a clear 

indication that most real world problems exhibit much better 

runtime and memory consumption behavior. 

 

4.3 Variable Ordering 
You might be curious if the ROBDD graph for our example 

expression (a  c)  (c  b) can be made any smaller. Certainly it 

can. The choice of our variable ordering significantly impacts the 

resulting quality (as measured by node and/or edge count) of the 

ROBDD. We would generate the following ROBDD if we used the 

variable ordering b < c < a: 

b

c

0

c

a

1
 

Figure 10 (b < c < a) 

 

What if we wanted to write out the Boolean expression from the 

BDD, how would we proceed? Simple, traverse all the paths that 

lead to the functions 1 value. If we traverse a false path from a 

literal we write down its negated form otherwise the non-negated 

form is used and connected into conjunctive clauses for each path. 

These are finally put together with disjunction connectives. From 

figure 10 above, the resulting equation would be (b  c  a)  

(b  c  a)  (b  c). This of course is the SOP form, for the POS 

for we would reverse the procedure, tracing each path to the false 

leaf node and connecting with the disjunction operator to form 

clauses, then conjoining the clauses with conjunctions. 

 

But wait, we can still do better, using the variable ordering c < a < 

b we obtain the graph in figure 11, which results in our original 

expression (c  a)  (c  b). Please note, this is not an approach 

for creating minimum CNF or DNF expressions. 

c

a

0

b

1
 

Figure 11 (c < a < b) 
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This has been a whole area of fruitful research culminating with 

many static and dynamic approaches to finding the optimal variable 

order. By static I refer to the initial order, perhaps gleaned from the 

schematic circuit itself (in the case your deriving ROBDD’s from a 

design schematic), or dynamically, either during the building or 

modification of the ROBDD or as a separate step entirely. In any 

case, the correct variable ordering can mean the difference between 

traversing a graph an exponential number of times to obtain some 

answer, or a linear number of times. The difference can be very 

stark on real world examples as shown by a small four input mux 

below with poor variable ordering. 

 
Figure 12 (poor variable ordering on mux4) 

Versus an optimal variable ordering for the same four input mux 

(see Figure 13 below). Although, sometimes a non-optimal 

variable ordering may be advantageous, e.g., if we treat this small 

mux4 example as a simplified version of the input stage of the 

la_l_lut molecule we can see that if bn bits representing the 

CRAM pattern, when ordered prior to the selects A, and B, it’s 

more apparent that there are certain CRAM bit values where the 

selects play no role in the overall function. For example, 

traversing the extreme left or right paths from the rooted node b0 

we would generate the constants 1 or 0, independent of the selects 

A and B values. 

 
Figure 13 (optimal variable ordering on mux4) 

The reader should not be put off using ROBDD’s over these details 

of building and optimizing the graph. Most open source BDD 

packages take care of these details for the user. Detailed knowledge 

about the underlying technology is reviewed for those occasions 

when a user encounters issues that may require debugging or as I 

said at the outset, understanding some tools behavior’s (e.g., 

Synopsys esp-cv, and why it can easily run out of memory or take 

forever to complete on certain schematics without intervention). 

4.4 Formal Equivalency 
While I’ve already mentioned that the ROBDD serves as a 

signature if you will, that can be an implicit check of equivalence 

between circuits because of the ROBDD’s canonical form, what 

would the results be if we explicitly verified two identical 

Booleans. Using our example again, let’s say we wanted to 

compare against a different implementation, but same function: 

?
=c

b

a

c

b

a

 

Figure 14 

If you build a ROBDD for both of these circuits you will (given the 

variable ordering c < a < b) expect to get identical ROBDD’s from 

Figure 11. But, what would happen if you explicitly did a formal 

comparison and we used the approach similar as with the challenge 

of finding a propagation enabling assignment? 

 

c

b

a

c

b

a

 

Figure 15 (explicit formal verification) 

In this case we tie each of the circuits together with a XNOR which 

will result in a 1 only when the inputs are identical. If you build the 

ROBDD for this complete circuit, you will see that the resulting 

ROBDD is a very uninteresting graph but is indeed a tautology (true 

for every input combination) and thus formally confirms 

equivalency. 

1

f

 

Figure 16 (tautology ROBDD) 

As ROBDD popularity spread like wild fire in the early 1990’s a 

plethora of tweaks and enhancements and modifications were made 

to address its short comings or extend it for certain domains. 

Stochastic optimization to variable ordering, further reduction of 

the data structure (e.g., do we need to explicitly indicate the false 

paths). One could imagine all the permutations you could do by 

allowing the edges to take on different values, relaxing the ordering 

of variables within the BDD, different decomposition approaches, 

etc., etc., etc. Resulting in more derivatives or flavors of BDD’s 

then time permits to discuss in this paper, e.g., ZBDD’s, EVBDD’s, 

FEVBDD’s, MTBDD’s, Free BDD’s, etc., etc., etc. Improvements 

have also been made to the fundamental data structure which very 

economically stores the Boolean; resulting in support for extremely 

large BDD’s so large where the structure is stored on disk and not 

main memory. Improvements to the garbage collection cache 
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handling. Parallelization and thread safe enhancements, again the 

list goes on seemingly ad-infinitum. 

Just as the list of extensions to BDD’s has grown prolifically, so 

has the application to real world problems in VLSI design. While 

we have only scratched the surface in terms seeing a few small 

examples the list obviously contains Synthesis, e.g., in the 

technology mapping phase, as it was seen that the BDD is 

decomposition into simpler expressions, and though ordering and 

reduction we can have canonical representations for Boolean 

functions. This approach is one way to map a BDD into a library of 

gates. Obviously, verification is readily tackled via BDD’s as we 

have seen. Not just for cones of combinatorial logic, but also finite 

state machines. In the case of FSM we essentially encode the 

variables just as we did with our examples, but also introduce the 

idea of a next state for the variables, e.g., variable v, would have v’ 

representing its next state, say in the case of a counter. 

Perhaps I’ll leave you with a more concrete example of how easy 

BDD’s can be used to represent something other then what we have 

discussed so far. How would you represent a function where we 

have values other than just true or false, perhaps you need five 

values,  the ⊤, ⊥ (true and false) but also z (for high impedance) and 

x (unknown) and let’s say x’ (unknown next state). We could 

encode these multiple values as binary variables as show below. 

v

0

1

2
3

4

v2

0

1 2
3

4

v1

v0 v0

 

Figure 17 

Now it should be apparent that the BDD can represent the function 

of many circuits, used in verifying many characteristics, 

simulation, verification, etc. and all this with the same data 

structure and underlying supporting algorithms simplifying ones 

coding challenges. 

5. BDD Libraries 
Hopefully you may be encouraged to try some small problems 

yourself, but daunted at the task of implementing the basic BDD 

capabilities. I would be also, it typically takes a very experienced 

software developer and advanced knowledge of BDD’s and 

ROBDD’s in general many months to implement a base library in 

support of same. But, given the popularity of BDD’s, there’s an 

abundance of good implementations readily available in your 

favorite language. While most have been implemented in C/C++, 

their API’s have been ported to Perl, python, tcl, Java, etc.. Your 

problem is now one of selecting the best package for your needs. 

Dr Geert Janssen does a great job of comparing most of the 

available software for BDD creation, manipulation, and support. In 

all, he reviews 13 packages and in summary concludes only a few 

are worthwhile of industrial level problems. I personally have had 

great success with both CUDD and BuDDY, both API’s are similar 

enough that if you learn one, the other is quite easy to migrate to. 

CUDD affords more functionality then BuDDY, indeed, more than 

any other available package. And both are blazingly fast. CUDD 

also has more recent support and maintenance, and more 

comprehensive documentation. 

6. CONCLUSIONS AND FUTURE WORK 
We have looked at BDD’s, and in particular the ROBDD, 

introduced some of the Predicate or 1st Order Logic terms and 

vernacular necessary to further probe the extent of BDD’s usage in 

VLSI design. A few of examples (verification, test, equivalency) 

were presented to hopefully wet ones appetite over further research 

into BDD’s as they had mine. While only touching on a few 

examples, rest assured BDD’s have found their usefulness in other 

VLSI problems, e.g., the optimal synthesis of pass gate transistor 

circuits and their layout, signal probability determination (as in 

Ansys Red Hawk’s probability propagation switching activity 

mode), even RLC interconnect parasitic reduction. 
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